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Lattices
First, we need to define the concept of a lattice.

Definition: Let B = {b1, b2, . . . , bn} be a set of linearly independent
vectors in Rn. The lattice generated by the basis B is defined as

L(B) =
{

n∑
i=1

cibi : ci ∈ Z

}

B can also be represented as a matrix
(
b1 b2 . . . bn

)
whose

columns form the basis.

Note that choosing ci ∈ R instead of ci ∈ Z results in a vector space. In the two-dimensional
case, we can visualize L(B) as a grid of points defined by B, and an element x ∈ L(B) as a
vector in this grid.

b1

b2

b1 + 4b2

−b1 − 2b2

The Z2 lattice using B1 =
{(

1
0

)
,

(
0
1

)}
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Importantly, bases are not unique. For example, in the above Z2 lattice, a different choice of
B can still result in L(B) = Z2.

b1

b28b1 − 5b2

5b1 − 4b2

The Z2 lattice using B2 =
{(

2
3

)
,

(
3
4

)}

Intuitively, the first basis seems somehow better than the second. We say that a basis is good
if its has short, nearly orthogonal basis vectors. The longer and more parallel basis vectors
are, the worse the basis is. We can define a metric to quantify how orthogonal a basis is.

Definition: Let B be a basis for a lattice L(B). The orthogonality defect
of B is the product of the basis vector lengths divided by the area/volume
of the object they span:

δ(B) =
∏n

i=1∥bi∥√
det(BT B)

We can see that δ(B) ≥ 1. If B is perfectly orthogonal, then δ(B) = 1.
The closer δ(B) is to 1, the better the basis.

We can calculate the orthogonality defects for both example Z2 bases, under the Euclidean
norm ∥x∥2 =

√
x2

1 + · · ·+ x2
n.

δ(B1) =
√

12 + 02 ·
√

02 + 12√
det

(
1 0
0 1

) = 1

δ(B2) =
√

22 + 32 ·
√

32 + 42√
det

(
13 18
18 25

) = 5
√

13 ≈ 18.03
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This confirms that the orthonormal basis B1 is better than B2. An interesting question is,
how hard is it to find the best basis for an arbitrary lattice? If this isn’t feasible, can we find
a good enough basis?

Result (Lattice Reduction): Let B be a basis for a lattice L(B).
1. It is NP-hard to find the best basis B0 having minimum δ(B0).
2. The polynomial-time Lenstra–Lenstra–Lovász (LLL) algorithm can

find a basis BL such that δ(BL) ≤ 2n2/2.
3. The block Korkine-Zolotarev (BKZ) algorithm can find a basis BK

such that δ(BK) ≤ nn. We do not have a good bound for its time
complexity, but it is worse than LLL.
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Lattice Problems
In this simple, two-dimensional case, it is easy to see that the lattice is Z2. However, in
general, it is quite difficult to describe all the points in a lattice, other than noting that
points in the lattice lattice are generated by the basis.

This property allows for lattice problems that are surprisingly hard to solve, both for
conventional computers and quantum computers.

Problem (Shortest Vector Problem): Let B be a basis for a lattice L(B).
What vector in the lattice is closest to the origin, aside from the zero
vector?

Problem (Closest Vector Problem): Let B be a basis for a lattice L(B).
What vector in the lattice is closest to a given point in Rn?

While somewhat simple in two dimensions, the higher the dimension is, the harder SVP and
CVP are to solve. Also, interestingly, the quality of a basis also impacts the difficulty of
solving these problems.

Observation: The SVP and CVP are much more difficult to solve with
a bad basis than a good basis.

Some more advanced problems are currently used in major lattice-based schemes.

Problem (Short Integer Solution): Let B be a basis for a lattice L(B).
Let A ∈ Zn×m

q be a matrix, and let t be a small positive integer. Find a
nonzero vector x ∈ Zm such that

Ax = 0 and ∥x∥ ≤ t

For some given norm ∥·∥.

Problem (Learning With Errors): Let B be a basis for a lattice L(B).
Let A ∈ Zn×m

q be a matrix. Given equation-solution pairs (A, bi), decide
whether

bi = As + ei or bi ← Zn
q

For some secret s and error ei. The notation bi ← Zn
q means “bi is

uniformly random from Zn
q ”.

Result: Computationally, solving LWE in the average case is as hard as
solving SVP in the worst case.

Some other difficult lattice problems: GapSVP, GapCVP, Shortest Independent Vectors
Problem (SIVP), Bounded Distance Decoding (BDD) problem.
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GGH Cryptosystem
The GGH cryptosystem is a scheme based on the CVP. Although broken, it is still a good
example of a simple lattice-based cryptosystem and is useful to look at.

Let B1 be a good basis and let B2 = UB1 be a bad basis for the same lattice L = L(B1) =
L(B2), where U is some matrix. Both bases are in matrix form.

GGH Cryptosystem
1. Bob publishes B2 as the public key, and keeps B1 as the private key.
2. Alice selects a secret plaintext m = (m1, . . . , mn) ∈ Zn that she wants

to send to Bob. She also selects a small error vector e ∈ Zn.
3. Alice calculates v = mB2. Note that v ∈ L. She then calculates her

ciphertext c = v + e and sends it to Bob.
4. Bob receives c from Alice and calculates u = cB−1

1 , which is

u = cB−1
1 = (mB2 + e)B−1

1 = mB2B−1
1 + eB−1

1 = mUB1B−1
1 + eB−1

1

= mU + eB−1
1

5. Bob removes the eB−1
1 error term by rounding to the closest lattice

point (solving the CVP), which works since he knows the good basis.
After rounding u to get u′ = mU , he computes m = u′U−1.

The key idea of GGH is that any individual aside from Bob only knows the bad basis. Hence,
the CVP becomes difficult to solve. However, Bob knows the good basis, so he can round c
to remove the error term.

Let us go back to our Z2 lattice example and walk through GGH. Note that the bad basis
B2 can be written in terms of the good basis B1, since B1 = I2×2.

B2 =
(

2 3
3 4

)
B1, U−1 =

(
2 3
3 4

)−1
=

(
−4 3
3 −2

)
1. Bob publishes the bad basis B2 as the public key, while keeping the good basis B1 as

the private key.
2. Alice selects m = “HI” = (7, 8) as her message. Using the bad basis B2, she calculates

v = mB2

v = (7, 8)
(

2 3
3 4

)
= (38, 53)

3. Alice chooses a small error, say e = (0.2,−0.3), calculates c = v + e = (38.2, 52.7), and
sends this ciphertext to Bob.

4. Bob receives c and calculates u = cB−1
1

u = (38.2, 52.7)
(

1 0
0 1

)−1
= (38.2, 52.7)

5. This is not a lattice point, so Bob rounds this to the closest lattice point, which is
u′ = (38, 53). He then computes the plaintext m = u′U−1

m = (38, 53)
(
−4 3
3 −2

)
= (7, 8) = “HI”
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Regev’s LWE Public-Key Cryptosystem
The Regev cryptosystem is a more advanced scheme, and is based on the LWE problem. It
is also quantum-safe, and thus is a great example of a straightforward, practical lattice-based
cryptosystem.
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